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1. The present note contains some fairly elementary remarks con-
cerning the number of bound state solutions of the Schr6dinger equation

V2 + E&= V(r)*,
for a central field of force, more specifically, the number nl of bound state
solutions of the radial wave equation

I-1(1 + 1)r-2q + Eb = V(r)+o (1)

for angular momentum 1. We assume the integral

I = J; X r I V(r)l dr (2)

to be finite, and we wish to estimate nI in terms of I. (In the units chosen
V has the dimension (length) 2, so that I is dimensionless.) R. Jost and
A. Pais (ref. 1, p. 844) have shown that no bound states occur if I < 1.
Our aim is to derive the more general inequality

(2l+1)n1<I (3)

(equality excluded). The number n1 counts the distinct stationary energy
values corresponding to equation (1). If the (21 + 1)-fold degeneracy
of each of them is taken into account it is seen that for a given angular
momentum I there are less than I bound states, and no bound states occur
if I > 1/2 (I-1). The estimate (3) is best possible in the sense that for
a given I potentials may be constructed which have a prescribed number
n1 of bound states for that angular momentum and for which I approaches

VOL. 38, 1952 961



MATHEMA TICS: V. BARGMANN

(21 + 1)nl arbitrarily closely (see section 5 below). The whole question
is taken up because the finiteness of I plays a significant role in several
recent investigations on scattering theory.1-4 (V may have any singu-
larities consistent with a finite value of I.)

2. As is well known, nI is the number of zeros (not counting r = 0)
of that solution +(r) of the equation

' --1(1+ 1)r-24b = V(r)+5 (4)

(E = 0) which vanishes at the origin. Special care must be taken with
a possible bound state E = 0. Since I is finite any solution of (4) has
the following asymptotic behavior at infinity. The expression r (l+l)0(r)
always approaches a finite limit, say X, as r -* c. If X 0 0, +5(r) increases
indefinitely. If X = 0 the expression rl4(r) approaches a finite limit u,
and ,. 0 0. In the latter case +(r) is square integrable if I > 0, and
accordingly E = 0 is a bound state.5 For 1 = 0, E = 0 is never a bound
state if I is finite. For the purpose of our discussion, however, we shall
count r = co as a zero of 4(r)-even if I = 0-whenever limr.... r-(l+l)O(r) =
0, and interpret the inequality (3) accordingly.6

Replace in equation (1) V(r) by a potential V1(r) such that VI(r) < V(r)
for all r, and denote by n1' the number of bound states for the new poten-
tial. Then nl' > n . We shall choose VI(r) =-W(r), where W(r) =
| V(r) |, and study the equation

-1(1 + 1)r240 =-W(r)4 W(r) = | V(r)|. (5)

Denote by Vi, P2, .. ., vP, (n = n,') the successive zeros of g(r) (O < VI <
'2 < . . . < Pn), and set Po = 0. We shall prove

Jf,rW(r)dr>21+ 1; a = Vk_l,8 = Pk, k > 1. (6)

The inequality (3) is obtained by adding the n inequalities (6), for we
find then

I = , rW(r) dr > fo "rW(r) dr > nl'(21 + 1) 2 ni(21 + 1).

3. Preliminary Remarks on +(r).-The solution of equation (5) which
vanishes at the origin is uniquely determined up to a constant factor.
As r --O, r-(l+l)+(r) approaches a finite non-vanishing limit K. Choosing
K = 1, we find from (5)

+(r) = r1+l- fG(r, p)4(p)W(p) dp. (7)
+(r) is then real. Here G(r, p) is the fundamental solution of the equation
f'-1(1 + 1)r-2f = 0, i.e., 62G(r, p)/br2 -1(1 + 1)r-2G(r, p) = 0, G(r, r)
= 0, and 6G(r, p)/br = 1 for r = p. We have
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G(r, p) = (21 + 1)-H(r, p); H(r, p) = r(r/p) -p(p/r) (8)

if r>0, p>0. ClearlyH(r, p) > Oifr> p. Since,forr-*.0,r-('+'10(r)
1, the integral in (7) is absolutely convergent.
In the sequel we shall need the inequality

H(ft, p)H(p, a) < p(H(f3, a) - Y(fl, a))

Y(fl, a) = 2(a8)1/2 [1 - (a/3)'I+'/2] > 0 ( > a). (9)

To derive it consider Z(p, (3, a) = pH((3, a) - H((3, p)H(p, a). By
straight forward computation

Z(p, (, a) = p(a#)'/2{(p2/aC,)l+'/2 + (a1/p2)+l/2-2(a/)1+1/2}
(af/1/{[( Va#)I2 _(V/a(/p)i+'/2]2 + 2[1 - (a/fl)'+1/2]}

2 pY(Q, a)

which establishes (9).
4. Proof of (6).-We distinguish four cases7 according as a = 0, a > 0;
< o (= o.

(a) a = 0, ,B= v < c. On the open interval (0, (3) q5 is positive,
and hence, by (7), 4)(r) < r+1. Since 4)(() = 0 we have from (7) and (8)

(21 + 1)#3+1 = J7 H(f3, p)4)(p)W(p)dp < IfoH(fl, p)p1+'W(p) dp
(21 + 1)(3+1 < #3+1[ j"pW(p) dp - fJl" (p/3)21+1pW(p) dp].
On dividing by #3+1 we find (6) because the last integral is positive.

(b) a > 0, ( < co. Since q5(a) = 0, the derivative 4)'(a) does not
vanish. If we replace 4)(r) by x(r) = 4)(r)/q'(a), then X(a) = 0, x'(a) = 1,
and hence

x(r) = G(r, a) - far G(r, p)x(p)W(p) dp (10)

On the interval a < r <(, therefore, 0 < x(r) < G(r, a). Thus, for
r = ,

G(ft; a) = J G(f, p) X(p) W(p) dp < fJ. G(6, p)G(p, a) W(p) dp,
or

(21 + 1)H(,B, a) < JfalH((3, p)H(p, a)W(p) dp
< [H(t3, a) - Y((3, a)] fJa pW(p) dp

[see (9)]. Division by H((3, a) establishes (6).
(c) a = 0, (3 = = c. Here we use (7), and, as in case (a), r1+1 >

qb(r) > 0 for -all positive r. By assumption, r(r) = (21 + 1)r-(L+1)q(r)
approaches 0 as r - c. By (7),

21 + 1 - T(r) - J r K(r, p)qb(p)W(p) dp = 0
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where

K(r, p) = r-(Q+l)H(r, p) = p-'(1 - (p/r)21+l) < p-1
Hence

.Jfo pW(p) dp 2 Jfor p1+ K(r, p)W(p) dp 2

21 + 1 - T(r) + forK(r, p)[p+l _- (p)]W(p) dp (11)

Since the integral in (11) is non-negative and T(r) -O0, we find at once
that fo X pW(p) dp 2 21 + 1. To exclude equality we observe that there
must exist two adjacent intervals [%, a] and [q, r] (t < v < r < co ) such
that 1" pW(p) dp and J7I pW(p) dp both exceed 1/4, say. If r > 1, then,
by (7), r1+ -+(r) 2 .ft G(r, p)q(p) W(p) dp and throughout the interval
[N, r] (pl+l -4(p))p (1+1) > c, where c is some positive constant. For
r>t we find from (11)

forpW(p) dp > 21 + 1 - r(r) + c fr p'K(r, p)pW(p) dp

and in the limit r -- co

Jo pW(p)dpo 21+ 1 +cf¼ oW(p)dp>21+ 1, q. e. d.

(d) a >0, ,B = i,, = x. We start, as in (b), from equation 10, so
that G(r, a) 2 x(r) > 0 for r > a. By assumption, (21 + 1)-1 0(r) =
x(r)/G(r, a) approaches 0 as r X . From (10) .we find

21+1 - O(r) 1 rH(. p x(p)W(p) dp =0.
J G(r, a)

Hence, by (9),

pW(p) dp 2 fGH(r a) G(p, a) W(p) dp 2 21 + 1 - 0(r) +
fT H(r, p)

G(r, a) [G(o, a) - x(p)]W(p) dp (12)

We proceed as in case (c) above. The inequality f.a pW(p) dp.2 21 + 1
is an immediate consequence of (12). To exclude equality the intervals
[t, a] and [X, t] are chosen as before (t 2 a), so that (21 + 1)(G(p, a) -
x(p))P ('1+) > c' > 0 if I < p < . For r > r (12) implies

pW(p) dp . 21 + 1-0(r) + c' , H(rN pW(p) dpj,PH(r, a)

and since lim ¢,,(H(r, p)/H(r, a)) = (a/p) , we find for r-* coYj @pW(p)dp
> 21 + 1 + c'a' J; pW(p) dp > 21 + 1. This concludes the proof of (6).

5. Examples.-The proofs in the preceding section suggest the con-
struction of potentials for which the inequalities (3) or (6) may be approxi-
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mately replaced .by the corresponding equalities. In 4(a), for example,
the first inequality will nearly reduce to an equality.if at those r where
W(r) is appreciable +(r) nearly equals rl+l, i.e., the field free solution.
This leads (fo.- n, = 1) to the choice of a potential V(r) = - W(r) (W > 0)
which vanishes everywhere with the exception of a small interval a < r <
a + a = b. Outside [a, b] we obtain for a suitably normalized solution
of equation (5)

+(r) - (r/a)l+1 r < a (13)
k(r) cl(b/r)1-c2(r/b)'+' r > b (

(21 + 1)cl = (I + 1)+(b) -b4/(b); (14)
(21 + 1)C2 = -I+(b) - b4'(b) (

If c2> 0, +b(r) -o - co as r-- co, so that +/(r) vanishes at a point /8given
by ((/b)21+1 = c1/c2, and if c2 = 0, then ,3 = o. Owing to the smallness
of a the relative change of +(r) across the interval [a, b] is negligible com-
pared to the relative change of +'(r), so that +6(b) -- 4(a). From the con-
dition c2> 0 we obtain -+'(b)/+(b) > I/b, and since 4/(a)/4,(a) =
(I + 1)/a, this amounts to

+0'(a)/+(a) - +'(b)/+(b) -' (+'(a) - +'(b))/+(a) > (21 + 1)/a (15)

Thus the required increment of the logarithmic derivative is the smaller
the larger a is chosen-or a potential of given strength is the more effective
in producing bound states the farther it is removed from the origin (which
is the reason for the weight factor r in the integral I). Without yet
specifying W(r), we see from (5) that +'(b) -+'(a) approxindately equals
- W&t(a) where W is a suitable average of W, provided the centrifugal
term 1(1 + 1)r-2 is negligible compared to W. If the increment is as
small as possible we find from (15) that WSa --' (21 + 1) which is equiva-
lent to fb rW(r) dr = Jf7 rW(r) dr 21 + 1.
To have a definite example consider W(r) = 1 + 1(1 + 1)r-2, and

a = (21 + 1)(1 + 5)/S. Then, in [a,b], +5(r) = cos (r - a) + ((I + l)/a)
sin (r - a) so that +(b) = cos a + ((I + 1)/a) sin 5, +'(b) = -sin S +
((1 + 1)/a) cos 6, and one verifies easily that c2 > 0 for small 5 (e.g.,
a < 1/4). The zero, f3, is determined by (W/b)21+1 = cl/c2, and approxi-
mately C1/C2 a-'5-1 so thatl,Ba .51/(2L+l). Finally,I = fb rW(r) dr=
5(a + '/26) + 1(1 + 1) log (1 + 5/a). As 5-- 0O,I 21 + 1. Alterately,
instead of varying a and keeping the strength of W fixed, one might keep
a fixed and vary the strength of the potential.

In a similar way one may construct potentials with two or more bound
state solutions such that I is arbitrarily close to (21 + 1)nj. One simply
has to add other troughs in suitably placed intervals [a', a' + 6'], etc., in
such a way, however, that two successive intervals are sufficiently far
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from one another and from the zero of +(r) between them. Note that
these potentials are adjusted only to one fixed value of the angular mo-
mentum.
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It has been recognized for some time that the theory of invariants and
covariants, with respect to a-given group, rests on the analysis of r 0 r,
where F and r' are irreducible representations of the group, into its irreduc-
ible componfnts. Thus if we denote by IX the irreducible representation
of the n-dimensional linear group which is associated with the partition
(X) =(1, **... XXn), Xl , X2 ) . .. .X3>n 0, of any non-negative integer
m into not more than n parts the core of the theory of invariants and co-
variants, under linear transformations, is the analysis of {XI {,u} where
(X) and (ju) are partitions of any two non-negative integers m and j, re-
spectively. The cases where (X) is either the 1-element partition (m) or
the m-element partition (l"') and (,u) is either the 1-element partition (j)
or thej-element partition (1') are of particular importance and the problem
of analyzing {(X 0 {,A, especially in these cases, has been much studied,
following the initial impetus given by Littlewood,1 during the past decade.
However the methods used have been laborious when m and j are greater
than 2; in these cases {XI 0 {g I contains many components, each corre-
sponding to a partition of mj, andeach of these has had to be determined sepa-
rately by a tedious calculation. We present in this note a method which
yields, in the cases of particular importance referred to, the components of
{X I {,u} in platoons, rather than individually, each platoon consisting of
those parentheses I ... I which contain the same number of non-zero parts.
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